Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 246: 42-50, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31174029

ABSTRACT

Composting is a biological process in which the organic matter is degraded by the mixed population of microorganisms in a moist aerobic environment to more stable and humidified end products. The composting process involves an interaction between the organic waste, microorganisms, moisture and oxygen. The molasses-based biomethanated distillery wastewater is presently effectively utilized with sugarcane pressmud through the composting process. The aim of present work was to evaluate the effect of ozone pretreatment on the rate of composting process and the quality of compost obtained. The GC-MS & FTIR analysis of ozone pretreated wastewater indicated the degradation and/or transformation of the organic compounds to simpler compounds present in the wastewater. Composting was performed by mixing fixed weight ratios of pressmud and different ratios of ozone pretreated wastewater (1:3, 1:4 and 1:5). The composting process was found to occur faster in the ozone pretreated wastewater for all the ratios as compared to the untreated wastewater. The final compost characteristics were found to be optimum for the 1:3 and 1:4 ratios of pressmud and wastewater. The bio-oxidative phase duration of composting has been reduced for the ozone pretreated wastewater.


Subject(s)
Composting , Ozone , Molasses , Oxidation-Reduction , Wastewater
2.
Chemosphere ; 230: 449-461, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31121509

ABSTRACT

The effectiveness of O3, O3/Fe2+, and O3/nZVI processes on biomethanated distillery wastewater (BMDWW) was evaluated in terms of biodegradability index (BI) enhancement, biofuel production, COD, color & toxicity reduction. A significant increase in biodegradability, COD, color and toxicity reduction was observed in O3/nZVI compared with O3, O3/Fe2+ due to more hydroxyl radical production. The O3/nZVI pretreated wastewater with enhanced BI (up to 0.71) showed 60% COD removal with additional biogas generation (64% methane content). From the Gas Chromatography Mass Spectrometry (GC-MS) analysis, 18 foremost organic compounds were predominantly detected in the raw distillery wastewater. The disappearance of the corresponding FTIR (Fourier Transform Infrared Spectroscopy) & GC-MS spectra during pretreatment processes signified the degradation or transformation of the recalcitrant present in the distillery wastewater. Subsequent (AnO + AO, AO) of pretreated BMDWW resulted in biodegradation rate enhancement by (1.83, 1.67), (3.5, 2.4) and (4.7, 2.9) times for O3, O3/Fe2+ and O3/nZVI processes respectively.


Subject(s)
Biofuels/analysis , Methane/analysis , Nanoparticles/chemistry , Ozone/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Biodegradation, Environmental , Catalysis , Color , Iron/chemistry , Oxidation-Reduction , Seeds/drug effects , Spinacia oleracea/drug effects , Wastewater/microbiology , Water Pollutants, Chemical/toxicity
3.
Sci Total Environ ; 678: 114-122, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31075578

ABSTRACT

The study reports the biodegradability enhancement of pharmaceutical wastewater along with COD (Chemical Oxygen Demand) color and toxicity removal via O3, O3/Fe2+, O3/nZVI (nano zero valent iron) processes. Nano catalytic ozonation process (O3/nZVI) showed the highest biodegradability (BI = BOD5/COD) enhancement of pharmaceutical wastewater up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93% and 82% respectively. The disappearance of the corresponding Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS) peaks after pretreatment indicated the degradation or transformation of the refractory organic compounds to more biodegradable organic compounds. The subsequent aerobic degradation study of pretreated pharmaceutical wastewater resulted in biodegradation rate enhancement of 5.31, 2.97, and 1.22 times for O3/nZVI O3/Fe2+ and O3 processes respectively. Seed germination test using spinach (Spinacia oleracea) seeds established the toxicity removal of pretreated pharmaceutical wastewater.


Subject(s)
Bioreactors , Drug Industry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Ozone , Pharmaceutical Preparations/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 357: 363-375, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29909170

ABSTRACT

The study investigates the effect of catalytic ozone pretreatment via Fe2+ and nZVI on biodegradability enhancement of complex textile effluent. The nZVI particles were synthesized and characterized by XRD, TEM and SEM analyses. Results showed that nano catalytic ozone pretreatment led to higher biodegradability index (BOD5/COD = BI) enhancement up to 0.61 (134.6%) along with COD, color and toxicity removal up to 73.5%, 87%, and 92% respectively. The disappearance of the corresponding GCMS & FTIR spectral peaks during catalyzed ozonation process indicated the cleavage of chromophore group and degradation of organic compounds present in the textile effluent. Subsequent aerobic biodegradation of nZVI pretreated textile effluent resulted in maximum COD and color reduction of 78% and 98.5% respectively, whereas the untreated effluent (BI = 0.26) indicated poor COD and color reduction of only 31% and 33% respectively. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. Seed germination test using seeds of Spinach (Spinacia oleracea), indicated the effectiveness of nano catalyzed ozone pretreatment in removing toxicity from contaminated textile effluent.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Oxidants/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Spinacia oleracea/drug effects , Spinacia oleracea/growth & development , Textiles , Waste Disposal, Fluid , Wastewater/chemistry , Wastewater/toxicity , Water Pollutants, Chemical/toxicity
5.
Water Sci Technol ; 76(5-6): 1001-1010, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28876242

ABSTRACT

In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO4, it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL-1 + 3 ml FeSO4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.


Subject(s)
Industrial Waste/analysis , Textile Industry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods , Biological Oxygen Demand Analysis , Color , Iron , Oxidation-Reduction , Ozone/chemistry , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...